Math 53: Multivariable Calculus

Worksheet for 2020-09-21

Problem 1. Here are some conceptual questions on the gradient and directional derivatives.

- (a) Is it possible for different level sets of a function to intersect?
- (b) How are the direction and magnitude of the gradient vector related to level sets?
- (c) If $\mathbf{r}(t)$ is a curve contained in the surface f(x, y, z) = 0, how are the vectors $\mathbf{r}'(3)$ and $\nabla f(\mathbf{r}(3))$ related? (Are they parallel? Orthogonal? Something else?)
- (d) Fix a function f(x, y), a number *c*, and a point (a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors **u** are such that $D_{\mathbf{u}}(a, b) = c$? Hint: the answer depends on |c|.

l

Problem 2.

(a) Let f(x, y) be a function on \mathbb{R}^2 and $\mathbf{r}(t)$ be an arc-length parametrized path in \mathbb{R}^2 (in other words, $|\mathbf{r}'(t)| = 1$ for all *t*).

Use the chain rule to show that

Use the chain rule to show that

$$D_{\mathbf{r}(t)}f(\mathbf{r}(t)) = \frac{d}{dt}f(\mathbf{r}(t)).$$
(b) Use the path $\mathbf{r}(t) = (\cos t, \sin t)$ to compute $f_y(1,0)$ for $f(x, y) = \cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right).$
Note: $\vec{r} = \langle x, y \rangle$
(A) $\frac{d}{dt} f(\vec{r}(t)) = f_x(\vec{r}(t)) \frac{dx}{dt} + f_y(\vec{r}(t)) \frac{dy}{dt}$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $= \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
 $f(x, y) = \nabla f(\vec{r}(t)) \cdot \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$

$$\begin{aligned} \text{(b)} |\vec{r}'(4)| &= |\langle -\sin t, \cos t \rangle| = | \quad \text{so the situation in (a) is applieable} \\ \vec{r}'(0) &= \langle 0, 1 \rangle \\ f_{y}(1, 0) &= D_{\langle 0, 1 \rangle} f(1, 0) = D_{\vec{r}'(0)} f(\vec{r}(0)) \\ &= \frac{d}{dt} f(r(t_{1})) \bigg|_{t=0} = \frac{d}{dt} \cos^{-1} \left(\frac{\cos^{2} t - \sin^{2} t}{1} \right) \bigg|_{t=0} \\ &= \frac{d}{dt} \cos^{-1} \left(\cos (2t_{1}) \right) \bigg|_{t=0} = \frac{d}{dt} \left(2t_{1} \right) \bigg|_{t=0} = 2 \end{aligned}$$