Worksheet for 2020-09-21

Problem 1. Here are some conceptual questions on the gradient and directional derivatives.
(a) Is it possible for different level sets of a function to intersect?
(b) How are the direction and magnitude of the gradient vector related to level sets?
(c) If $\mathbf{r}(t)$ is a curve contained in the surface $f(x, y, z)=0$, how are the vectors $\mathbf{r}^{\prime}(3)$ and $\nabla f(\mathbf{r}(3))$ related? (Are they parallel? Orthogonal? Something else?)
(d) Fix a function $f(x, y)$, a number c, and a point (a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors \mathbf{u} are such that $D_{\mathbf{u}}(a, b)=c$? Hint: the answer depends on $|c|$.
(a) No.
 is nonsense.

 tina rads higher level act. The gradients mayithate is lager when kevel ats men closer together, sine that mes the function is increasing mane rapidly the oc.
(c) Just as in (b), they are or thogonal. Yon can alto see this wing the chain raki sit $f\left(r^{\prime}(t)=0\right.$ allen. $\frac{d}{d t}(f(r(t))=0$
$1 /$ See 2(a)
$\nabla f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)$ so these two vectors ave or thognzil.
(d)

$$
\begin{array}{rlr}
D_{\vec{n}} f(a, b) & =\nabla f(a, b)-\vec{u} \\
& =|\nabla f(a, b)||\vec{u}| \cos \theta \quad \text { wheen } \theta \text { is the angle befreen } \\
& =|\nabla f(a, b)| \cos \theta \quad \nabla f(a, b) \text { and } \vec{u} \\
& \quad \text { (it is between } 0 \text { and } \pi)
\end{array}
$$

So $\quad \cos \theta=c /|\nabla f(a, b)|$.
If $|c|>|\nabla f(a, b)|$, then the equation above has no solution for θ, so there are no possible \vec{u}.
If $|c| \leqslant|\nabla f(a, b)|$, then the equation above has one solution for θ :

If $c=|\nabla f(a, b)|$ then $\theta=0$ and there is one possible $\overrightarrow{\vec{a}}$:

$$
\xrightarrow{\vec{u}} \nabla f(a, b)
$$

If $c=-|\nabla f(a, b)|$ then $\theta=\pi$ and there is one possible \vec{a} :

$$
\xrightarrow{\pi} \xrightarrow{\pi} \nabla f(a, b)
$$

If $\quad|c|<|\nabla f(a, b)|$ then $0<\theta<\pi$ and there are two possible \vec{n} :

Problem 2.
(a) Let $f(x, y)$ be a function on \mathbb{R}^{2} and $\mathbf{r}(t)$ be an arc-length parametrized path in \mathbb{R}^{2} (in other words, $\left|\mathbf{r}^{\prime}(t)\right|=1$ for all $t)$.

Use the chain rule to show that

$$
D_{\mathbf{r}^{\prime}(t)} f(\mathbf{r}(t))=\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))
$$

(b) Use the path $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ to compute $f_{y}(1,0)$ for $f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$.

Note: $\vec{r}=\langle x, y\rangle$
al $\frac{d}{d t} f(\vec{r}(t))=f_{x}(\vec{r}(t)) \frac{d x}{d t}+f_{y}(\vec{r}(t)) \frac{d y}{d t}$
 to be a unit

$$
=\prod_{r^{\prime}(t)} f(r(t))
$$

(b) $\left|\vec{r}^{\prime}(t)\right|=|\langle-\sin t, \cos t\rangle|=1$ so the situation in (a) is applicable.

$$
\begin{aligned}
& \vec{r}^{\prime}(0)=\langle 0,1\rangle \\
& \begin{aligned}
f_{y}(1,0)= & D_{\langle 0,1\rangle} f(1,0)=D_{r^{\prime}(0)} f(\vec{r}(0)) \\
& =\left.\frac{d}{d t} f(r(t))\right|_{t=0}=\left.\frac{d}{d t} \cos ^{-1}\left(\frac{\cos ^{2} t \cdot \sin ^{2} t}{1}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} \cos ^{-1}(\cos (2 t))\right|_{t=0}=\left.\frac{d}{d t}(2 t)\right|_{t=0}=2
\end{aligned}
\end{aligned}
$$

